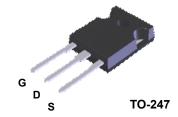


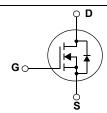
April 2013

FDH45N50F_F133

N-Channel UniFETTM FRFET[®] MOSFET 500 V, 45 A, 120 m Ω

Features


- $R_{DS(on)} = 120 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 10 \text{ V, } I_D = 22.5 \text{ A}$
- Low Gate Charge (Typ. 105 nC)
- Low C_{rss} (Typ. 62 pF)
- · 100% Avalanche Tested
- · Improved dv/dt Capability


Applications

- Lighting
- · Uninterruptible Power Supply
- · AC-DC Power Supply

Description

UniFETTM MOSFET is Fairchild Semiconductor[®]'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET[®] MOSFET has been enhanced by lifetime control. Its t_{rr} is less than 100nsec and the reverse dv/dt immunity is 15V/ns while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts

Absolute Maximum Ratings

Symbol	Parameter			FDH45N50F_F133	Unit
V _{DSS}	Drain-Source Voltage		500	V	
I _D	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		45 28.4	A A
I _{DM}	Drain Current	- Pulsed	(Note 1)	180	Α
V _{GSS}	Gate-Source voltage			±30	V
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	1868	mJ
I _{AR}	Avalanche Current		(Note 1)	45	А
E _{AR}	Repetitive Avalanche Energy		(Note 1)	62.5	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	50	V/ns
P_D	Power Dissipation	(T _C = 25°C) - Derate above 25°C		625 5	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		э,	300	°C

Thermal Characteristics

Symbol	Parameter	FDH45N50F_F133	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max. 0.2		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	40	C/VV	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH45N50F	FDH45N50F_F133	TO-247	-	-	30

$\textbf{Electrical Characteristics} \quad \textbf{T}_{\text{C}} = 25^{\circ}\text{C unless otherwise noted}$

Symbol	Parameter	Conditions	Min.	Тур.	Max	Unit
Off Charac	teristics	•		•	•	•
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	500			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500V, V _{GS} = 0V V _{DS} = 400V, T _C = 125°C			25 250	μ Α μ Α
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30V, V _{DS} = 0V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30V, V _{DS} = 0V			-100	nA
On Charac	teristics				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 22.5A		0.105	0.12	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40V, I _D = 22.5A		49.0		S
Dynamic C	haracteristics	•		•	•	
C _{iss}	Input Capacitance	f = 1 0MHz		5100	6630	pF
C _{oss}	Output Capacitance			790	1030	pF
C _{rss}	Reverse Transfer Capacitance			62		pF
C _{oss}	Output Capacitance	V _{DS} = 400V, V _{GS} = 0V, f = 1.0MHz		161		pF
C _{oss} eff.	Effective Output Capacitance	V_{DS} = 0V to 400V, V_{GS} = 0V		342		pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time $V_{DD} = 250V$, $I_D = 48A$			140	290	ns
t _r	Turn-On Rise Time	$R_G = 25\Omega$		500	1010	ns
t _{d(off)}	Turn-Off Delay Time			215	440	ns
t _f	Turn-Off Fall Time	(Note 4)		245	500	ns
Q_g	Total Gate Charge	V _{DS} = 400V, I _D = 48A		105	137	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		33		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		45		nC
Drain-Sour	rce Diode Characteristics and Maximun	n Ratings			1	1
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			45	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Fo	orward Current			180	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 45A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 45A		188		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100A/μs		0.64		μС

NOTES:

 $^{{\}bf 1.}\ {\bf Repetitive}\ {\bf Rating:}\ {\bf Pulse}\ {\bf width}\ {\bf limited}\ {\bf by}\ {\bf maximum}\ {\bf junction}\ {\bf temperature}$

^{2.} L = 1.46mH, I $_{AS}$ = 48A, V $_{DD}$ = 50V, R $_{G}$ = 25 Ω , Starting T $_{J}$ = 25°C

^{3.} $I_{SD} \le 45 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting T_J = 125°C

^{4.} Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

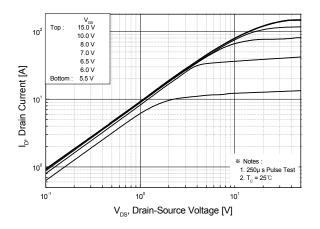


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

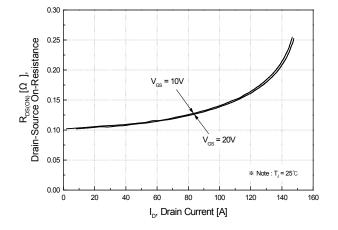


Figure 5. Capacitance Characteristics

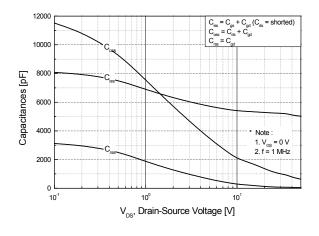


Figure 2. Transfer Characteristics

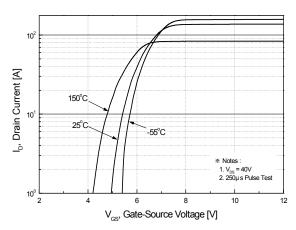


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

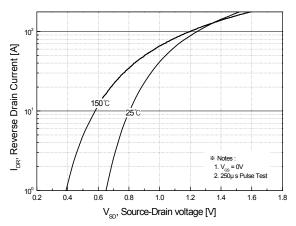
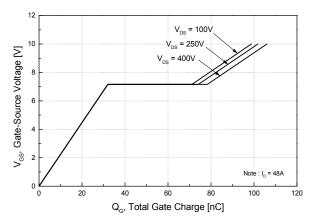



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

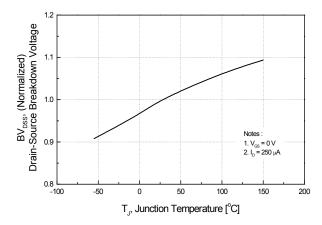


Figure 8. On-Resistance Variation vs. Temperature

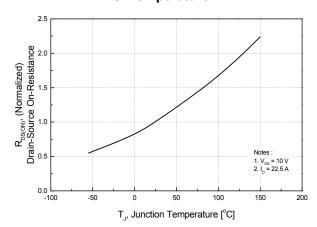


Figure 9. Maximum Safe Operating Area

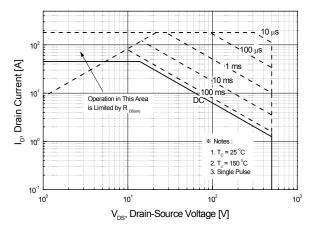


Figure 10. Maximum Drain Current vs. Case Temperature

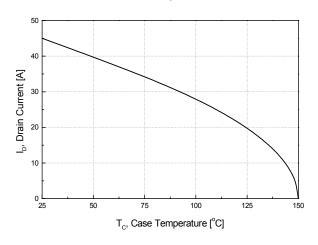


Figure 11. Typical Drain Current Slope vs. Gate Resistance

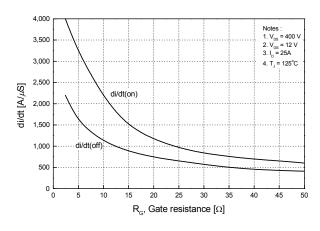
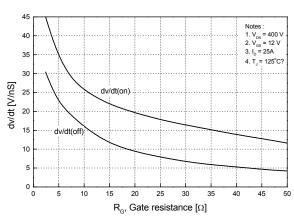



Figure 12. Typical Drain-Source Voltage Slope vs. Gate Resistance

Typical Performance Characteristics (Continued)

Figure 13. Typical Switching Losses vs. Gate Resistance

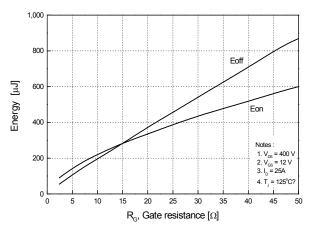


Figure 14. Unclamped Inductive Switching Capability

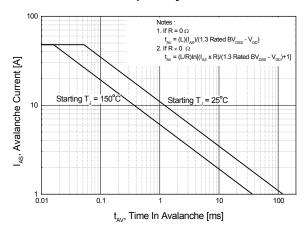
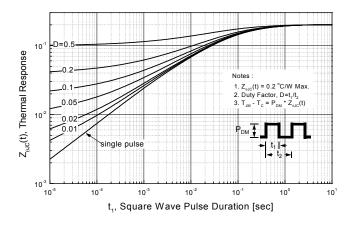
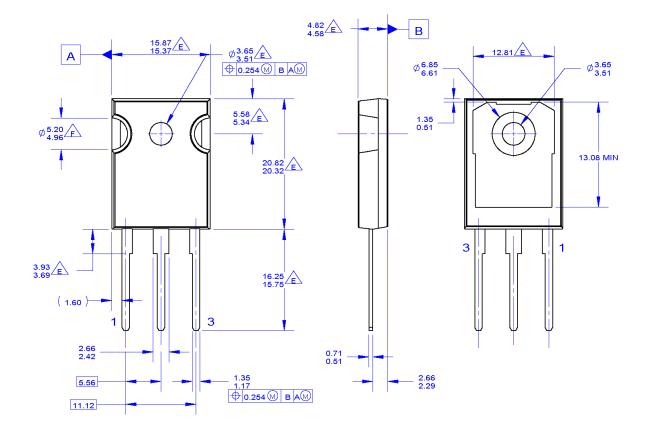




Figure 15. Transient Thermal Resistance Curve

Mechanical Dimensions

TO-247A03

NOTES: UNLESS OTHERWISE SPECIFIED.

- PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
 DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
 ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994
- DOES NOT COMPLY JEDEC STANDARD VALUE
- NOTCH MAY BE SQUARE
 G. DRAWING FILENAME: MKT-TO247A03_REV03

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ **FPS™** AccuPower™ F-PFS™ FRFET® AX-CAP® BitSiC™ Global Power ResourceSM Build it Now™ Green Bridge™ CorePLUS™ Green FPS™ Green FPS™ e-Series™ CorePOWER™

CROSSVOLT™ Gmax™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™

Dual Cool™ Marking Small Speakers Sound Louder EcoSPARK® and Better™

MegaBuck™ EfficentMax™ ESBC™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ Fairchild® MillerDrive™

Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver™ FACT[®] $\tilde{\mathsf{FAST}}^{\mathbb{R}}$ OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

PowerTrench® PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™ SPM[®]

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

SYSTEM®* GENERAL TinyBoost[™] TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* սSerDes™

Sync-Lock™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		